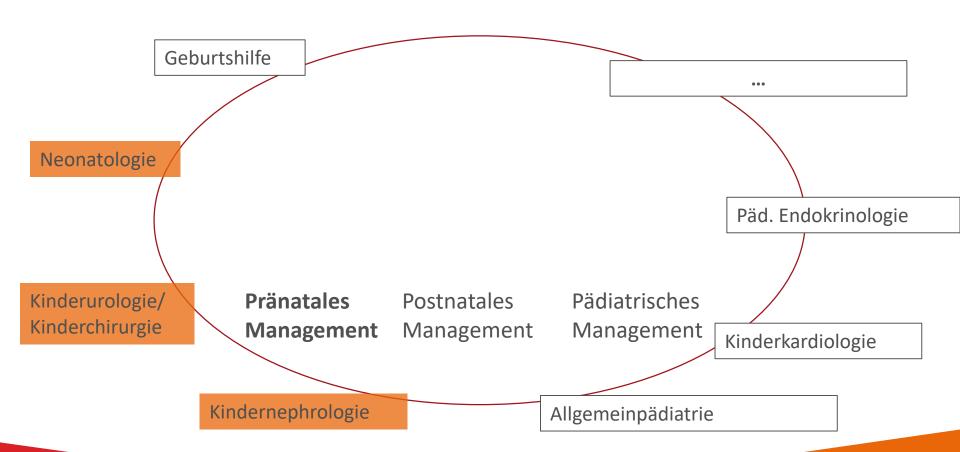


ANIFS: Große Tagung 2020


Komplexe urogenitale Fehlbildung – was nun?

24.01.2020, Cnopfsche Kinderklinik Nürnberg

Prof. Dr. Maximilian Stehr, PD Dr. Christian Plank, Dr. med. univ. Johannes Blatt

Komplexe urogenitale Fehlbildung – eine mehrstufige Aufgabe für ein interdisziplinäres Team

Schwangerschaftsanamnese

- Mutter 36 Jahre, 2.-Gravida, 2. Para
- Adipositas (104 kg zur Geburt)
- Mütterliche Vorerkrankungen: Hypothyreose, substituiert mit L-Thyroxin


Pränatal 26+1.SSW

Bilder mit freundlicher Genehmigung: Klinik Hallerwiese, Abt. Geburtshilfe und Pränatalmedizin, Prof. Kainer

Pränatal 26+1.SSW: Harnblase nicht darstellbar

Theoretische Grundlagen

Congenital Anomalies of the Kidney and Urinary Tract

- Angeborene Fehlbildung der Nieren und ableitenden Harnwege treten bei 3-6/1000 Geburten auf
- 20-30% aller beobachteten Fehlbildungen
- Mehr 57 % aller Fälle chronischer Nierenerkrankungen im Kindesalter stehen im Zusammenhang mit CAKUT (NAPRTCS: 2008 Annual Report)

Embryologie der Nieren und Harnwege

- Komplexe Organogenese ab 5. SSW, Abschluss der Nephrogenese erst bis zur 36. SSW
- Der Fötus ist nicht auf die eigene Nierenfunktion angewiesen
- Urinproduktion ab 10.bis 32. SSW steigend bis 12 ml/h, vor Geburt 25-40 ml/h
- 60% der Amnionflüssigkeit ist Urin
- Nach Geburt nur 1-3 ml/kg/h Urinproduktion!

Theoretische Grundlagen

Congenital Anomalies of the Kidney and Urinary Tract

Angeborene Fehlbildungen der Harnwege und Nieren ...

betreffen 0,3 -1,6 auf 1000 Geburten.

können isoliert, in Kombination mit anderen Fehlbildungen (ca. 30%) und als Teil genetisch definierter Syndrome (ca. 200) auftreten.

Pathogenetisch wird von einer multifaktoriellen Genese mit genetischen und Umwelt-Faktoren ausgegangen.

CAKUT Erkrankungen verursachen ca. 50% aller Fälle mit terminaler Niereninsuffizienz im Kindes- und Jugendalter

Pränatal Konsil – die kindernephrologische Sicht

Abschätzung der postnatalen Nierenfunktion = Risiko der postnatalen Dialysepflicht

Anhand von

- Nierenmasse
- Einseitig oder beidseitige Veränderung
- Fruchtwassermenge
- Parametern fetaler
 Nierenfunktion

pro Kilogramm Geburtsgewicht257,426 Glomeruli mehr

Hughson et al., Kidney International, 2003

Pränatal Konsil – die kindernephrologische Sicht

Abschätzung der postnatalen Nierenfunktion: Ausreifung der Nierenfunktion über die ersten 2 Jahre

Änderung der renalen Clearance in Abhängigkeit vom Alter (Creatinin-Clearance)

Effektivität und Outcome nach pränataler Intervention

"Effectiveness of Prenatal Intervention on the Outcome of Diseases That Have a Postnatal Urological Impact"

- Prenatal Intervention in LUTO improves survival [...] by improving pulmonary function [...] and may be advantegeous for renal function
- Development of better instrumentation would improve the success and reduce complications

Marco et al. Frontiers in Pediatrics, April 2019

Pränatal: Abschätzung der renalen Schädigung z.B. anhand ß-2 Mikroglobulin im fetalen Urin

• ß-2 Mikroglobulin (Norm < 2 mg/l) (Marker der tubulären Schädigung)

Punktion re Nierenbecken: 16,8 mg/l

Punktion li Nierenbecken: 13,2 mg/l

β2-micro-globulin (urine)	Muller et al. (1993) [25]	100	β2-microglobulin >2 mg/l: poor	Specificity 83 %
				Sensitivity 80 %
	Muller et al. (1999) [26]	71	β2-microglobulin >5 mg/l: poor	Specificity 82 %
			T	Sensitivity 100 %
				Good correlation with serum creatinine at 1 year
	Anumba et al. (2005) [59]	113	β2-microglobulin >13 mg/l: poor	Sensitivity 63 %
	Craparo et al. (2007) [61]	12	β2-microglobulin >13 mg/l: abnormal	Not predictive for potential response to shunting

aus W. Aulbert, M.J. Kemper, Severe antenatally diagnosed renal disorders: background, prognosis and practical aproach, Ped Nephrol, 2016 31:563-574

Pränatal: Abschätzung des Risikos schwerer Begleitfehlbildungen

- Im fetalen Ultraschall kein Anhalt für weitere Fehlbildung
- Chromosomenanalyse 46 XX, unauffälliger Befund.

26+1. SSW: Punktion der rechten Niere

26+4. SSW: Harnblase?

26+6. SSW nach Punktion der linken Niere



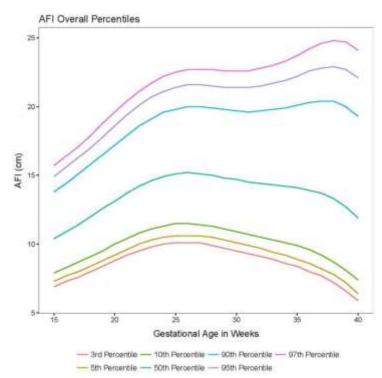
Pränatal: 27+1. SSW: Fruchtwassermenge unauffällig

Präpartal: 34+0. SSW: abnehmende Fruchtwassermenge

Präpartal: 35+5. SSW: Oligohydramnion

Oligohydramnion: Ätiologie

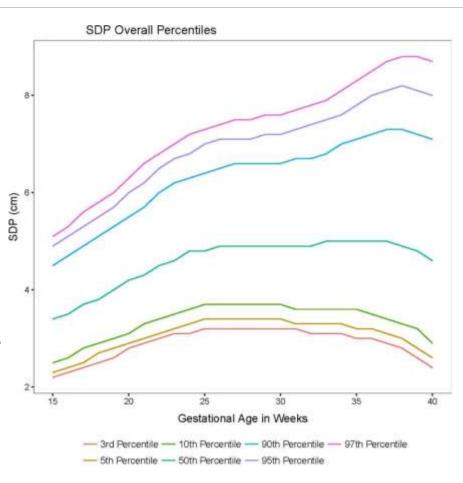
- Blasensprung
- Placentainsuffizienz
- ROH (Renaler Oligohydramnion) CAKUT
- Infektionen
- Chromosomenaberrationen (Triploidie, Trisomie 18, Turner-Syndrom)
- Stoffwechselstörungen, z.B. inadäquat behandelte mütterliche Hypothyreose


Im 2. und 3. Trimenon werden bis zu 65% des Fruchtwassers durch fetale Diurese gebildet → renale Pathologien führen häufig zu Oligo- oder Anhydramnie

Peipert, Obstet Gynecol Surv 46 (6), 325-39, 1991

Oligohydramnion: Messung

- "Amniotic Fluid Index" (AFI):
- Aufteilung des mütterlichen Abdomens in 4 Quadranten (Orientierungspunkte: Nabel/Linea nigra)
- Schallkopf vertikal
- Summe der jeweils 4 Durchmesser der tiefsten Fruchtwasserlakune in cm = AFI



Rutherford, S E, Obstetrics and gynecology, 70(3 Pt 1):353-6, 1987 Bild: Owen J et al. NICHD Fetal Growth Studies—Singletons. Am J Obstet Gynecol 2019. 221 (1), 67.e1-67.e12

Oligohydramnion: Messung

- "Single deepest pocket" (SDP): vertikale Bestimmung der tiefsten Fruchtwasserlakune in cm
- Cochrane-Review:
 - "The SDP measurement […] seems a better choice."
 - "AFI increases the rate of diagnosis of oligohydramnios and the rate of induction of labor without improvement in peripartum outcomes."

Nabhan et al., Cochrane Database of Systematic Reviews 2008, 3, CD006593 Bild: Owen J et al. NICHD Fetal Growth Studies—Singletons. Am J Obstet Gynecol 2019. 221 (1), 67.e1-67.e12

Oligohydramnion: Definition

- Keine einheitliche Definition
- Orientierende Faustregel: AFI <5 cm bzw.
 SDP < 2 cm in jedem Gestationsalter pathologisch

Aulbert, Kemper: Pediatr Nephrol 2016, 31 (4), 563-74, Apr 2016

Oligohydramnion: Folgen

- Wachstumsretardierung
- Lungenpathologie: Lungenhypoplasie, Pneumothorax, pulmonale Hypertension
- Skelettfehlstellungen, Kontrakturen
- Klumpfüße
- "Potter-Facies":
 - Epikanthus
 - Hypertelorismus
 - Mikrogenie
 - tief ansetzende, flache Ohren, fehlende Knorpelsubstanz

Renales Oligohydramnion und pulmonale Morbidität

Essentiell für eine regelrechte Lungenentwicklung

- Vorhandensein von ausreichend Fruchtwasser
- Balancierte Druckverhältnisse zwischen unten und oberen Atemwegen
- Regelrechte Bewegungen des fetalen Thorax und der glatten Atemwegsmuskulatur

Wu et al. Pediatr Neonatol 58 (1), 3-7, Feb 2017 Fewell JE, et al. J Appl Physiol Respir Environ Exerc Physiol 1983, 55 (4), 1103-8 Harrison et al. J Pediatr Surg 2003, 38 (7), 1012-20 Mullassery D et al. Semin Pediatr Surg 2015, 24 (4), 152-5

Renales Oligohydramnion und pulmonale Morbidität

Aber:

- Ausschließlich sekundär bedingte Morbidität?
 - Mausmodell: Lungenschädigung vor Oligohydramnion
- Multifaktorielle Lungenschädigung?
 - Laminin beeinflusst Lungen- und Nierenentwicklung

→ Große Heterogenität in der klinischen Ausprägung

Smith et al. J Urol 175:783–786, 2006 Willem et al. Development 129:2711–2722. 2002

Outcome: Mortalität bei renalem Oligohydramnion

Table 3 Outcome studies of fetuses with antenatal diagnosis of renal oligohydramnios

Reference	Number of patients with ROH	Mortality [n (%)]	Pulmonary outcome	Neonatal renal failure	Long-term renal outcome
Klaassen et al. [49]	23	7/23 (30 %); 4 deaths in neonatal period	14/23 requiring mechanical ventilation, 11/23 had pneumothorax	4/23 started PD in neonatal period, discontinuation possible in 2	Of 16 survivors, 8 required RRT, 8 could be managed conservatively
Mehler et al. [45]	36	13/36 (36 %); 7 within 2 days	Best oxygenation index < 9.6 predictive of survival	2/23 with neonatal RRT	

Aulbert, Kemper: Pediatr Nephrol 2016, 31 (4), 563-74, Apr 2016 Klaassen et al. Nephrol Dia Transplant 22 (2), 432-9, Feb 2007 Mehler et al; Nephrol Dial Transplant 2011, 3514–3522

Pränatale Prognosemarker bezüglich Mortalität

- Pränatale Messungen des Lungenvolumens per Sonographie / MRT ?
- Zeitpunkt der Diagnose eines renalen Oligohydramnions

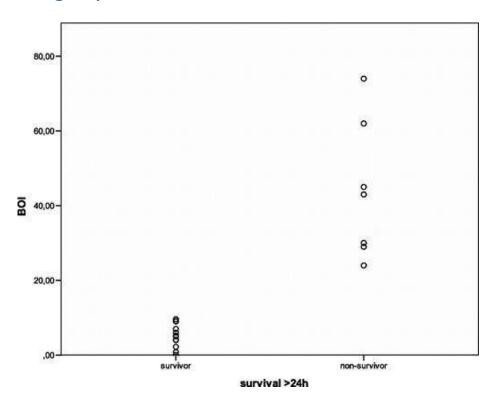
Aulbert, Kemper: Pediatr Nephrol 2016, 31 (4), 563-74, Apr 2016 Klaassen et al. Nephrol Dia Transplant 22 (2), 432-9, Feb 2007 Mehler et al; Nephrol Dial Transplant 2011, 3514–3522

Outcome: Mortalität bei renalem Oligohydramnion

Table 3 Outcome studies of fetuses with antenatal diagnosis of renal oligohydramnios

Reference	Number of patients with ROH	Mortality [n (%)]	Pulmonary outcome	Neonatal renal failure	Long-term renal outcome
Klaassen et al. [49]	23	7/23 (30 %); 4 deaths in neonatal period	14/23 requiring mechanical ventilation,	4/23 started PD in neonatal period, discontinuation possible in 2	Of 16 survivors, 8 required RRT, 8 could be managed conservatively
Mehler et al. [45]	36	13/36 (36 %); 7 within 2 days	Best oxygenation index <9.6 predictive of survival	2/23 with neonatal RRT	

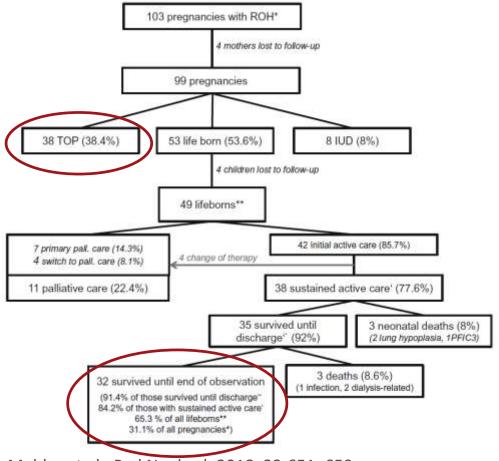
Aulbert, Kemper: Pediatr Nephrol 2016, 31 (4), 563-74, Apr 2016 Klaassen et al. Nephrol Dia Transplant 22 (2), 432-9, Feb 2007 Mehler et al; Nephrol Dial Transplant 2011, 3514–3522


Pulmonales Outcome bei renalem Oligohydramnion

Postnataler Marker:

Best Oxygenation Index am ersten Lebenstag (BOI-d1):

 F_iO_2 [%] × MAP [mbar]/ p_aO_2 [mmHg]


→ BOI war am ehesten prädiktiv bzgl Mortalität

Mehler K et al; Nephrol Dial Transplant 2011, 3514–3522

Elterliche Entscheidung und Überleben bei ROH in Köln

Mehler et al; Ped Nephrol, 2018, 33:651-659

Outcome bei renalem Oligohydramnion in Köln

Table 4 Prenatal characteristics and outcome of the different disease entities

n = 103	OU	RA/KD	ARPKD	Others	p value
Prenatal maternal and fetal characteristics					
Maternal age	32 (18-41)	28 (18–37))	30 (16-40)	32 (16-41)	0.022
Onset of ROH	21 (13–37)	20 (13-32)	29 (20-35)	17 (13–31)	0.005
Nonrenal diagnosis	13/43 (30)	16/36 (44)	2/12 (16)	8/11 (73)	0.022
Amniocentesis	18/43 (43)	15/37 (42)	3/9 (33)	4/7 (57)	0.713
Fetal Cystatin C (mg/l)	1.6 (1.3–1.9)	2.4 (1.3–5.3)	1.4 (1.3–1.5)	2.4 (1.8-3.0)	0.019
Fetal ß2-microglobulin (mg/l)	3.5 (2.7–7.6)	7.2 (5–25.2)	2.2 (2.2–2.2)	5 (4.4–5.6)	0.019
Outcome of the study population					
Proportion of lifeborn infants of all $(n = 99^a)$	30/42 (71)	10/34 (29)	8/12 (67)	5/11 (45)	0.002
Survived of all lifeborns $(n = 49^b)$	23/27 (85)	3/10 (30)	5/7 (71)	4/5 (80)	0.011
Survived of all $(n = 95^a, b)$	23/39 (59)	3/34 (9)	5/11 (45)	4/11 (36)	< 0.001
Palliative (1'/2')	2/0	5/1	0/2°	0/1	
Neonatal death	2	1	0	0	

Data are given as median and range (in parenthesis) or as number and percentage of the study population (in parenthesis), OU obstructive uropathy, RA/KD renal agenesis/kidney dysplasia, ARPKD autosomal recessive polycystic kidney disease, ROH renal oligohydramnios

Mehler et al; Ped Nephrol, 2018, 33:651-659

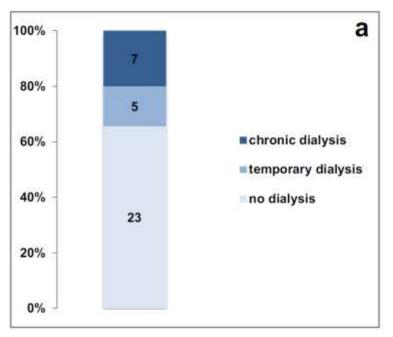
^a 4 pregnancies lost to follow-up (1 OU and 3 RA/KD)

^b 4 lifeborns lost to follow-up

^c postnatal change of diagnosis to disorder of fatty acid oxygenation (DFAO)

Perinatales Outcome bei ROH: Beatmungsindikation

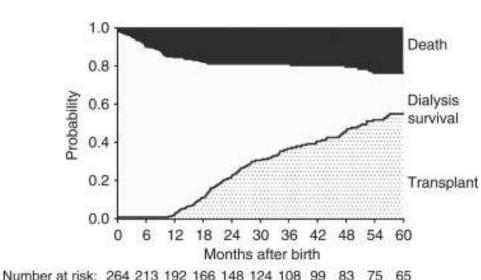
Table 5 Postnatal characteristics


n = 38	OU $(n = 25)$	RA/KD $(n = 4)$	ARPKD $(n = 5)$	Others $(n = 4)$	p value
Gestational age (weeks)	37 (24-41)	36 (33–40)	37 (32–38)	35 (32–39)	0.878
Birthweight (g)	2,940 (810-4,840)	2,700 (1,165-3,700)	2,850 (2,010-3,700)	2,500 (1,850-3,690)	0.951
Male (%)	23 (92)	3 (75)	2 (40)	3 (75)	0.051
APGAR 5 min	8 (3–10)	8 (6–8)	8 (5–9)	5 (4–8)	0.069
APGAR 10 min	9 (6–10)	8 (6–9)	8 (8–9)	7 (5–8)	0.040
Mechanical ventilation	5 (20)	2 (50)	2 (40)	3 (75)	
CPAP/NIV	11 (44)	2 (50)	3 (60)	1 (25)	0.507
No respiratory support	8 (32)	0	0	0	
iNO	5 (20)	2 (50)	4 (80)	3 (75)	0.025
Surfactant	5 (20)	0	3 (60)	2 (50)	0.123
HFOV	4 (16)	2 (50)	3 (60)	3 (75)	0.040
Pneumothorax	7 (28)	2 (50)	2 (40)	2 (50)	0.752
Neonatal death	2(8)	1/4 (25)	0/5	0/4	0.497

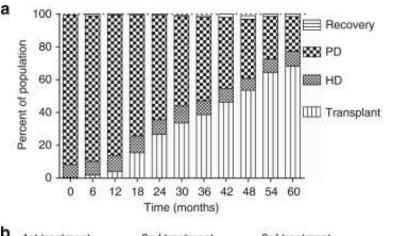
Data are given as median and range (in parenthesis) or as number and percentage of the study population (in parenthesis). Note that postnatal characteristics are only given for infants with sustained active treatment

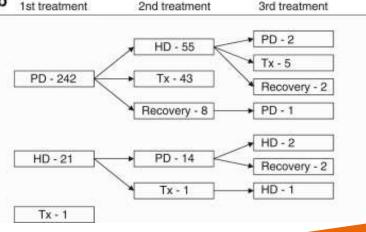
CPAP continuous positive airway pressure, NIV non-invasive ventilation, iNO inhaled nitric oxide therapy, HFOV high-frequency oscillation ventilation, OU obstructive uropathy,RA/KD renal agenesis/kidney dysplasia, ARPKD autosomal recessive polycystic kidney disease

Perinatales Outcome bei ROH: frühe Dialyse Indikation bei 33%


12 von 35 Überlebenden benötigen innerhalb von 6 Wochen Dialyse.

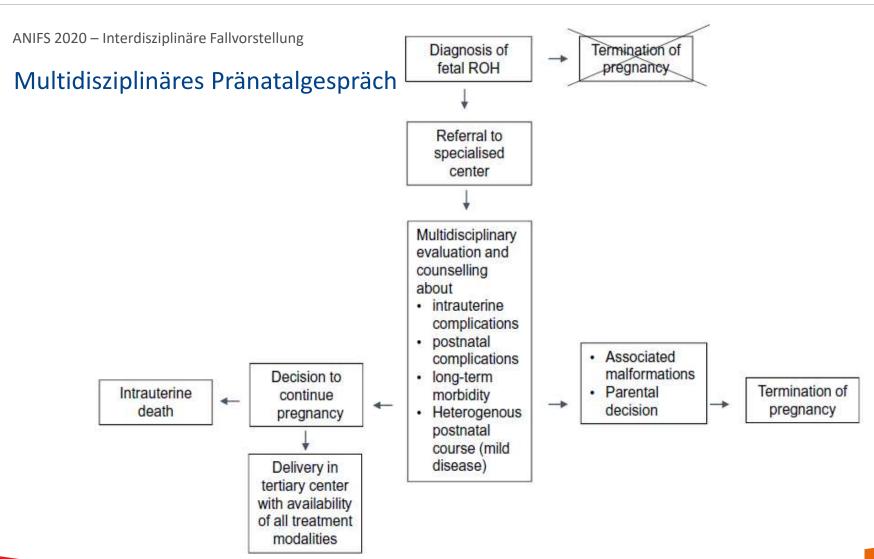
Mehler et al; Ped Nephrol, 2018, 33:651–659




Outcome bei frühem Beginn der Nierenersatztherapie in großen

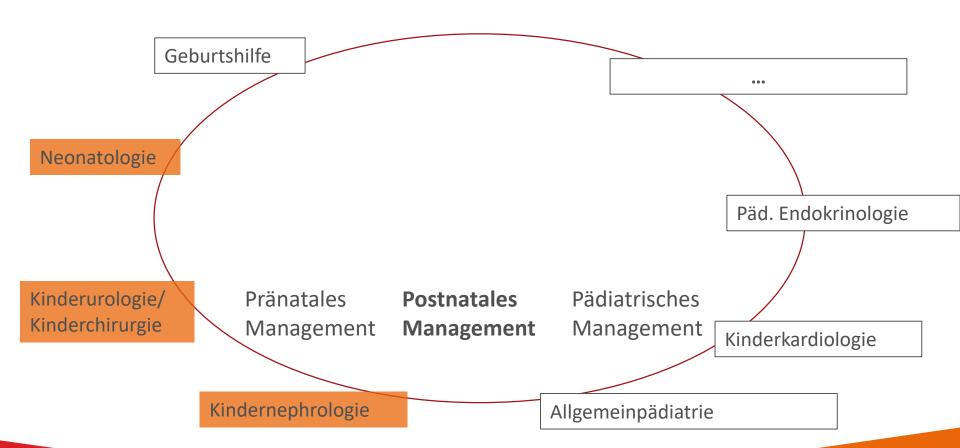
internationalen Registern

Van Stralen KJ et al, Survival and clinical outcomes of children starting renal replacement therapy in the neonatal period, Kidney International, 2014



Checkliste Pränatalgespräch

- ✓ Risikostratifizierung: CAKUT in Kombination mit Oligohydramnion?
- ✓ Begleitfehlbildungen?
- ✓ Indikation pränatale Intervention?
- ✓ Indikation vorzeitige Entbindung? Indikation für antenatale Steroide?
- ✓ Planung des Postnatalen Managements:
 - Verlegung an Zentrum mit
 - Neonatologisch intensivmedizinischer Betreuung (inkl. HFO, NO)
 - Kinderchirurgie/-urologie
 - Nierenersatztherapie in erreichbarer Nähe



aus: Aulbert, Kemper: Pediatr Nephrol 2016, 31 (4), 563-74, Apr 2016

Komplexe urogenitale Fehlbildung – eine mehrstufige Aufgabe für ein interdisziplinäres Team

Geburt

- Sectio in der 35+6. SSW
- Erstversorgung:
 - Kind ohne Eigenatmung zur Erstversorgung
 - Beginn Maskenbeatmung
 - ab 4. Lebensminute zunehmende Eigenatmung
 - Anlage CPAP, im Verlauf mit IMV
 - Transport auf die neonatologische Intensivstation
- Apgar 7/9/9*, NspH: 7,30 BE: -1 mmol/l

Aufnahmebefund

- Gewicht 3400 g (90 97. Perz.) , Länge 45 cm (25 50. Perz.), Kopfumfang 36 cm (>97. Perz.)
- weibliches äußeres Genitale und Anus regelrecht angelegt
- Sonst keine Auffälligkeiten, insbesondere kein Hinweis auf äußerliche Fehlbildungen
- Reifezeichen entsprechend dem errechneten Gestationsalter

Checkliste Geburt

- ✓ Atemwege, Lungenfunktion
- ✓ Kreislauf, Blutdrücke
- ✓ Elektrolyt-/Säure-Basenhaushalt
- ✓ Infektiologie
- ✓ Diurese, Bilanz, Nierenfunktions- und –retentionsparameter
- ✓ Screening auf primäre / sekundäre Begleitfehlbildungen? (Herz, Abdomen, ZNS, Augen, Ohren, Skelett)
- ✓ Gedeihen

Neonatologisches Management

- Keine Volumenüberladung!
- Kalium sparen
- Nach Bedarf Natrium substituieren
- Blutdruck stabilisieren (Cave art. Hypotonie!)
- Nephrotoxizität vermeiden
- Sonographie, ggf. urologische Entlastung

Lunge und Kreislauf

- CO2-Retention → Intubation im Alter von 90 min, konventionelle Beatmung
- Milde Kreislaufinsuffizienz unter Sedierung:
 Dobutamin für 36h
- Extubationsversuch am 5. Lebenstag gescheitert bei Apnoen
- Extubation erfolgreich am 7. Lebenstag auf CPAP
- CPAP am Folgetag erfolgreich beendet
- Entzug: Clonidin bis 09.06.2017

Labor

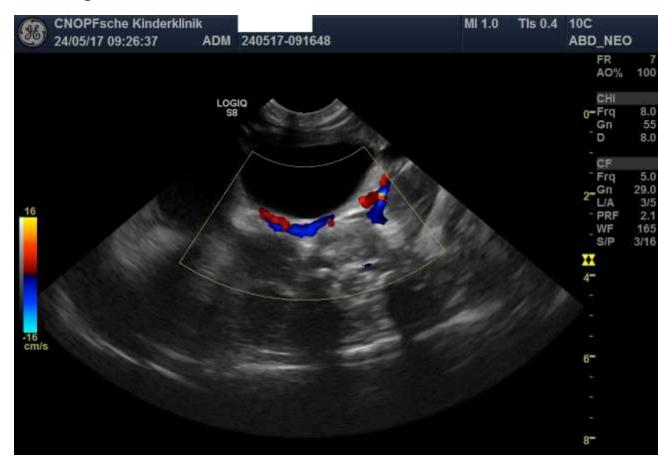
	Geburt	2. Lebenstag	5. Lebenstag
Kreatinin mg/dl	0,8	1,7	2,78
Cystatin C-2 mg/l	2,73	3,10	2,76
Natrium mmol/l	132	131	123
Kalium mmol/l	4,0	4,5	3,69
Gesamteiweiß g/dl	4,1	3,1	
Phosphat mmol/l	1,9		1,9
Harnstoff		30	76

Sonographie

zystisch veränderte Niere rechts

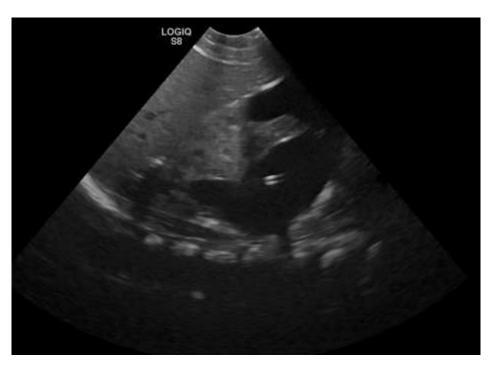
Sonographie

linke Niere schwer abzugrenzen, dysplastisch


Keine Harnblase darstellbar

Sonographie

- Keine Harnblase darstellbar
- Nach
 Katheterisierung
 durch die Harnröhre
 und Anspülen ist
 eine kleine
 Harnblase
 darstellbar


1. Lebenstag

Anurie in den ersten 12 Lebensstunden

→ Anlage eines percutanen Nephrostomas rechts

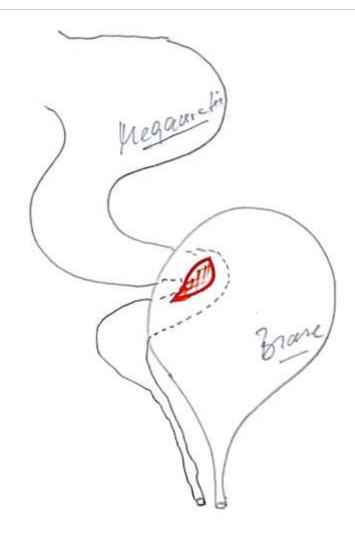
Nephrostoma rechts

Durchleuchtung mit Kontrastmittel

Antegrade
Durchleuchtung des
Urogenitaltraktes mit
Kontrastmittel über das
liegende Nephrostoma

Durchleuchtung mit Kontrastmittel

Durchleuchtung mit Kontrastmittel


Befund:

Ausgeprägter Megaureter rechts, welcher ektop in der Urethra mündet.

Operation

Am 27. Lebenstag erfolgte die Seitzu-Seit-Ureterovesikostomie rechts bei Megaureter und Doppelniere rechts (Ureter duplex).

Postoperativer Verlauf

- → Spontane Urinausscheidung per Urethra
- → Abnahme Hydronephrose/Megaureter rechts
- → Stabilisierung Harnstoff/Krea

Die drei Phasen des akuten Nierenversagens

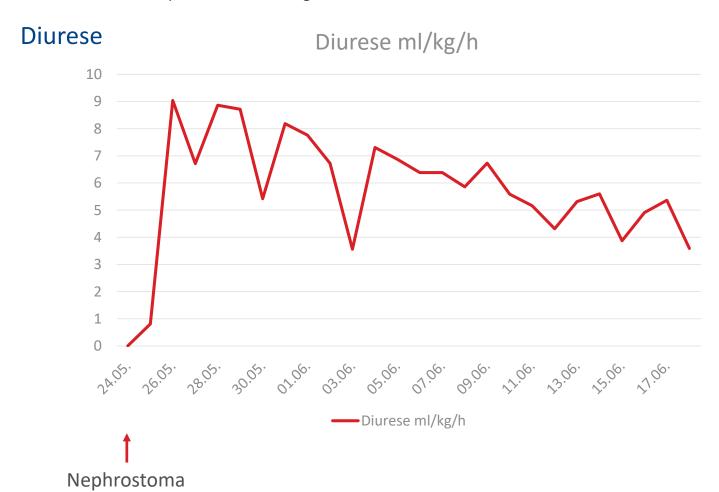
Initialphase:

renale Schädigung Asymptomatisch oder Symptome der Grunderkrankung

Manifestes Nierenversagen:

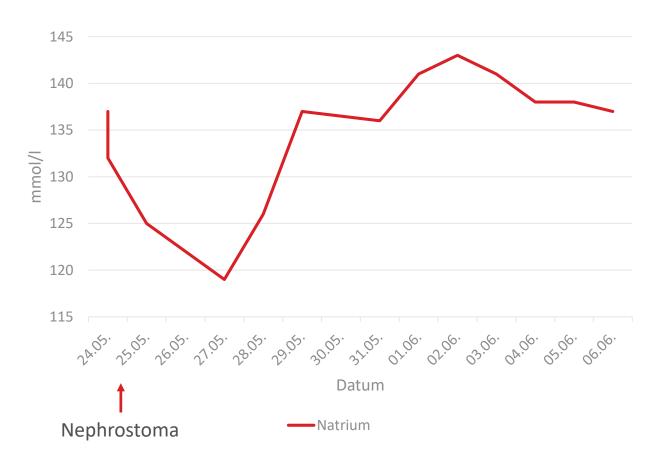
Krea ↑ GFR ↓ Ggf. Oligurie

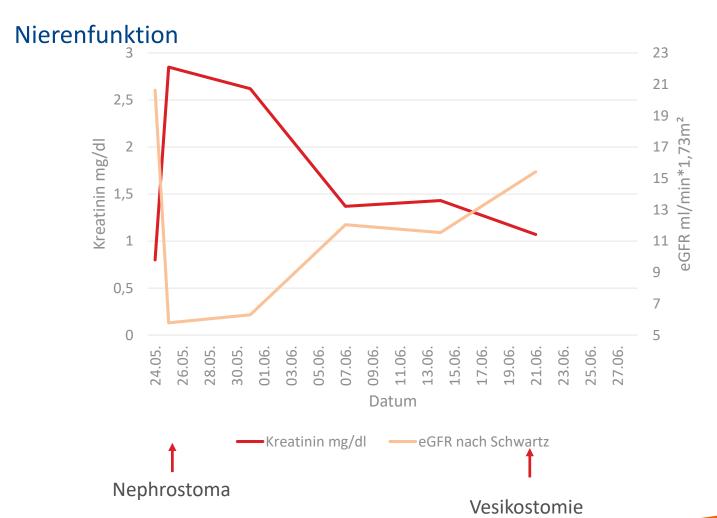
Polyurische Phase:


Krea ↓ Polyurie und Elektrolytverlust

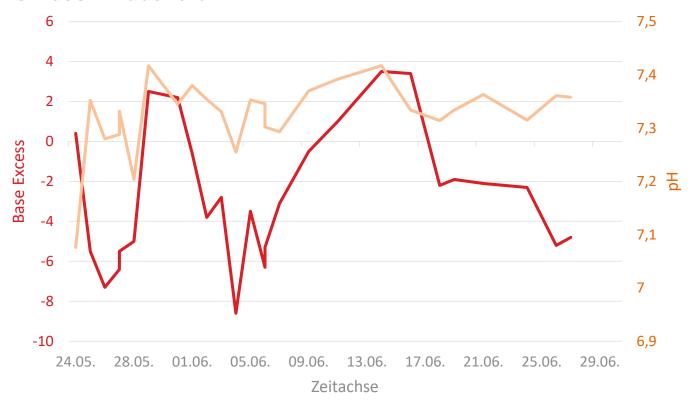
GFR 个

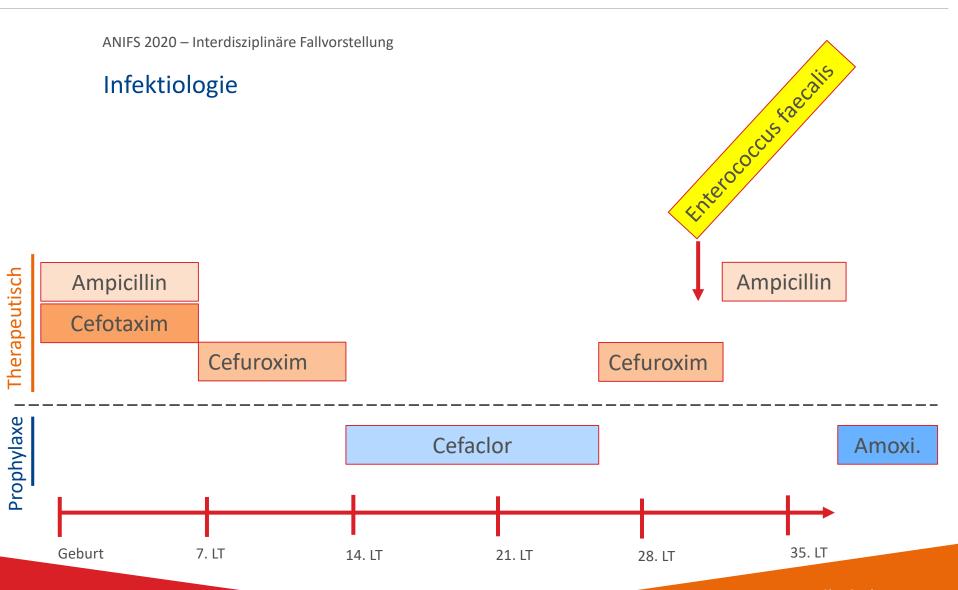
Zeit


Vorsicht vor Elektrolyt- und Flüssigkeitsverlust nach urologischer Entlastung!

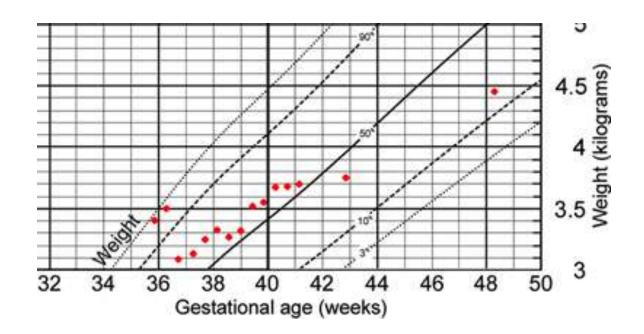


Natrium




Säure-Basen-Haushalt

Vesikostomie

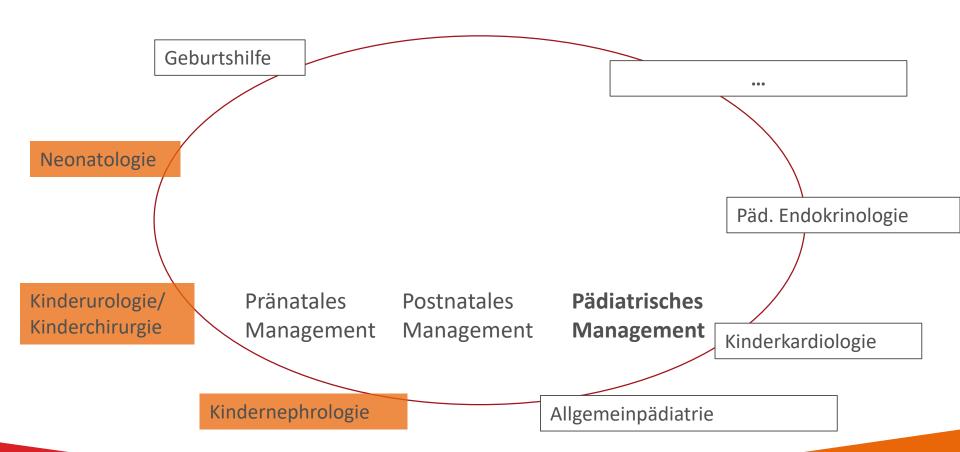


Gedeihen - Gewichtsperzentilen

Perzentilen nach: Fenton, Kim, BMC Pediatr. 2013 Apr 20;13:59

Checkliste Entlassung

- ✓ Reinfektionsprophylaxe, Surveillance
- ✓ Blutdrucküberwachung
- ✓ Gedeihen, Ernährung
- ✓ Begleittherapie (NaCl, NaHCO3)!



Entlass-Diagnosen

- Komplexe Urogenitalfehlbildung
- Doppelniere rechts mit Hydronephrose und ektop in die Urethra mündenden Megaureter rechts
- funktionslose dysplastische Nieren links
- Z.n. Seit-zu-Seit Ureterovesikostomie rechts
- Harnwegsinfektion mit Enterococcus faecalis
- Chronische Niereninsuffizienz

Komplexe urogenitale Fehlbildung – eine mehrstufige Aufgabe für ein interdisziplinäres Team

Kindernephrologische Betreuung bei CAKUT: Nephronmasse erhalten

Brenner Hypothese: Weniger Nephrone, höherer Blutdruck, fortschreitende Nierenschädigung

Restörte Nierenentwicklung

Nephronenzahl ↓

Glomerulosklerose↑

Filtrationsfläche ↓

Glomeruläre und systemische Hypertension

Kindernephrologischer Status im Alter von 1 Monat

Diagnosen: Komplexe Urogenitalfehlbildung mit Doppelniere rechts mit Hydronephrose und ektop in die Urethra mündenden Megaureter rechts sowie funktionsloser Nierendysplasie links

Z.n. Seit-zu-Seit Ureterovesikostomie rechts 19.06.2017

Abschätzung der eGFR bei Kindern nach Schwartz

eGFR (ml/min x 1.73m²) = K x Körperhöhe (cm) / Serumkreatinin (mg/dl)

Schwartz GJ et al., Pediatr Nephrol, 2007

K: Korrekturfaktor

FG	0,33
NG	0,45
< 1 Jahr	0,45
2 - 12 Jahre	0,55
13 - 18 Mädchen	0,55
13 - 18 Jungen	0,70

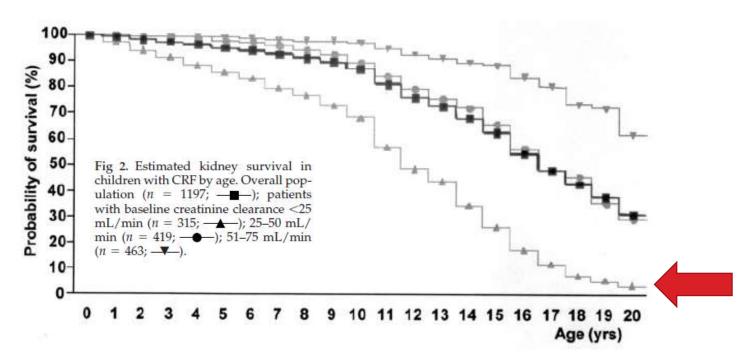
Aktuelle Retentionswerte bei Entlassung aus der Neonatologie: Serum Krea 0,9 mg/d (normal < 0,45), eGFR (CKID) 25,5 ml/min (normal eGFR 55 ml/min), Harnstoff 54 mg/dl (< 36)

Abschätzung der eGFR bei Kindern, modifiziert nach CKiD von 1 – 16 Jahren

eGFR =
$$39.1$$
[height/Scr]^{0.516}[1.8/cystatin C]^{0.294}×[30/BUN]^{0.169}[1.099]^{Male}[height/1.4]^{0.188}

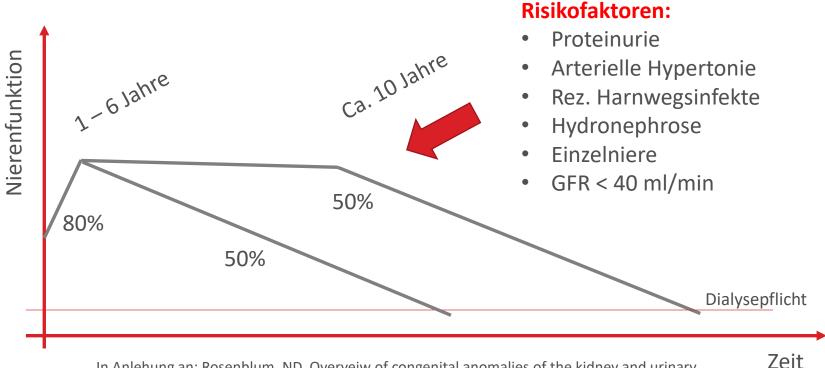
Schwartz GJ et al., JASN, 2009

Vereinfachte Bedside Formel nach CKiD bei moderater CNI:

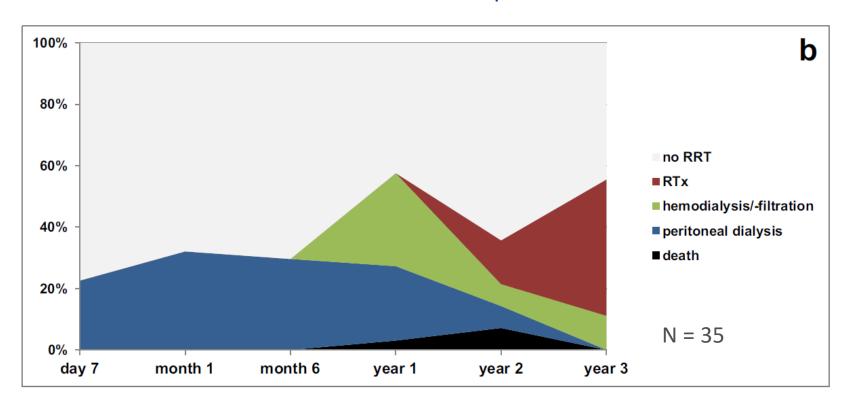

eGFR = 0,413 x Körperhöhe (cm)/ S-Kreatinin (mg/dl)

Copelovitch L et al., CJASN, 2011

Aktuelle Retentionswerte bei Entlassung aus der Neonatologie: Serum Krea 0,9 mg/d, eGFR (CKID) 24,4 ml/min, Harnstoff 54 mg/dl


Herr Doktor, und wann muss mein Kind an die Dialyse? Prognose Abschätzung bei CNI und CAKUT

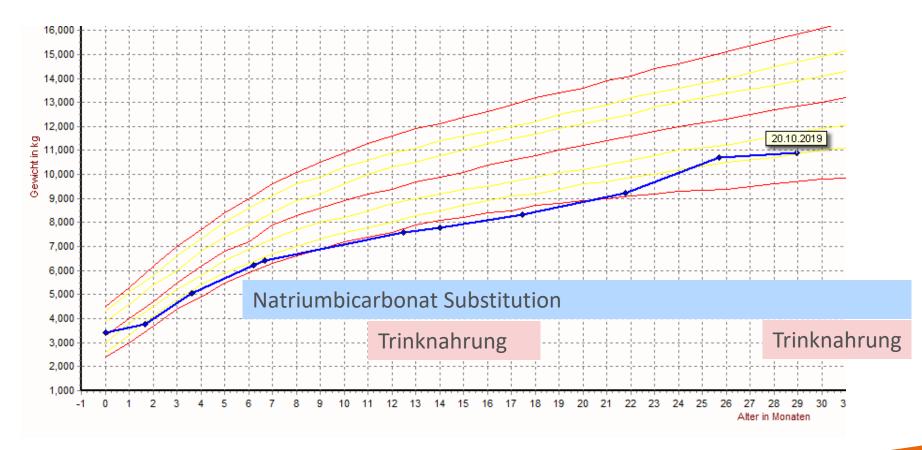
Ardissino G et al., Epidemiology of chronic renal failure in children: Data from ItalyKidProject , Pediatrics, 2003


Herr Doktor, und wann muss mein Kind an die Dialyse? Abschätzung GFR Entwicklung bei CNI und CAKUT über die Zeit

In Anlehung an: Rosenblum, ND, Overveiw of congenital anomalies of the kidney and urinary tract (CAKUT), www.uptodate.com, 18.01.2020 González Celedón C., Bitsori M Tullus K, Progression of chronic renal failure in children with dysplastic kidneys, Pediatric Nephrology, 2007

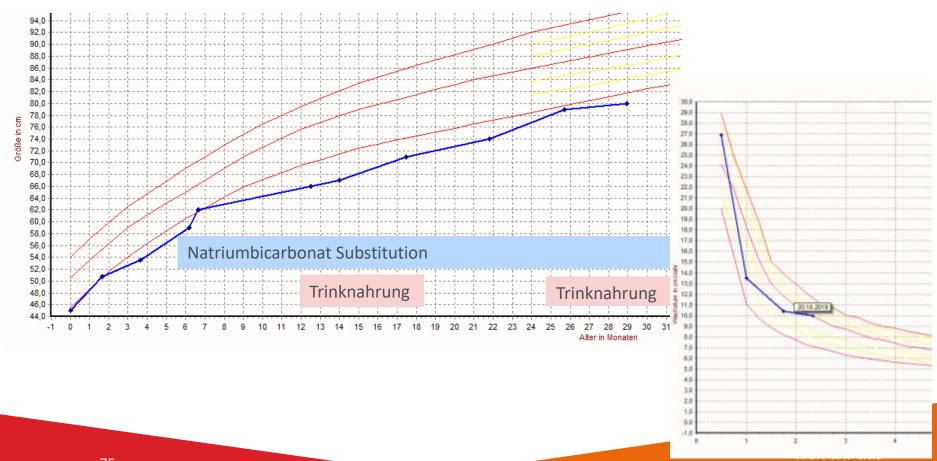
Perinatales Outcome bei ROH: 50% der Kinder brauchen in den ersten 3 Jahren keine Nierenersatztherapie

Mehler et al; Ped Nephrol, 2018, 33:651-659



Kindernephrologische Behandlungsziele:

Konsequenzen der CNI	Ursachen	Therapie
Wachstums- verzögerung	Mangelnde Zufuhr von Kalorien, Erbrechen und Inappetenz. evtl. Salzverlust Metabolische Azidose	Kalorienzufuhr -130% Sondenernährung NaCl/NaHCO ₃ Wachstumshormon (rGH)
Osteopathie	Phosphatretention Vitamin D-Mangel	Phosphatarme Diät P- Binder 1-OH Vitamin-D/Calcitriol
Anämie	Erythropoetin-Mangel	Gabe von EPO und Eisen
Elektrolytstörung	Kaliumretention	Furosemid Kaliumarme Diät Ionenaustauscher
Hypertonie	Volumenüberladung, Gefäße	Antihypertensiva

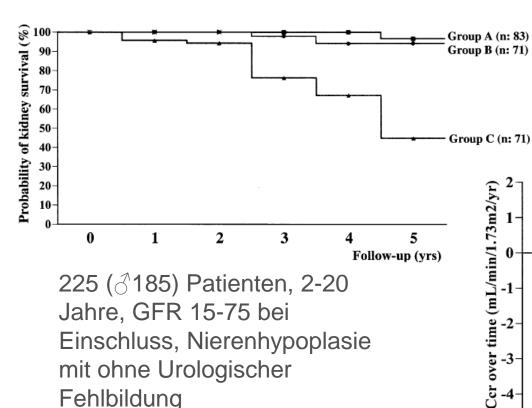


Gewichtsentwicklung

Längenwachstum und Wachstumsgeschwindigkeit

Therapie Optionen Malnutrition und Wachstumsstörung

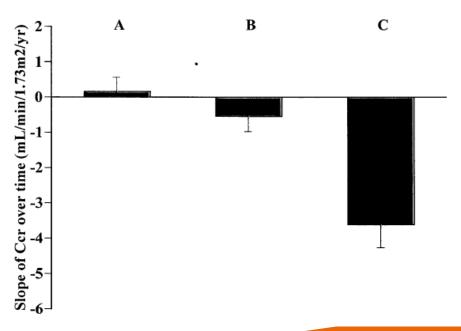
Behandlungsmöglichkeiten:


 Hochkalorische Nahrung 100-130 kcal/kg/d, Eiweiß 1,2 g/kg/d

(Eiweißrestriktion verlangsamt die Progression der mit Proteinurie einhergehenden Nierenerkrankungen bei Kinder nicht!)

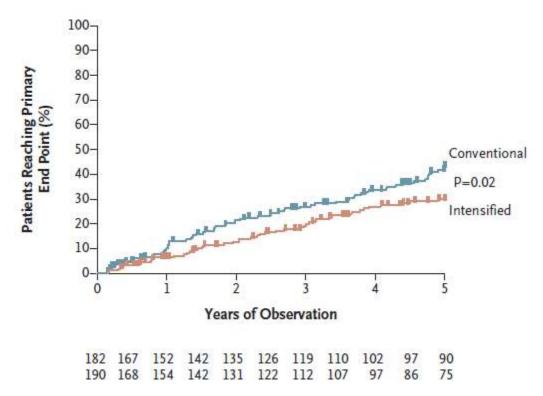
- Nahrungsmittelzusätze oder Sondenernährung
- NaCl (2-6 mmol/kg/d) und NaHCO₃ (2-5 mmol/kg/d)
- Wachstumshormontherapie (0.35-0.5 mg/kg/Wo. sc)
- Intensivere/frühe Dialyse
- Nierentransplantation

Proteinurie als Progressionsfaktor der CNI bei Kindern mit Nierenhypolasie


Ardissino G et al., Proteinuria as a Predictor of disease progression in children with hypoplastic nephropathy, Ped. Nephrol, 2004

Urin Eiweiß/Crea:

A: < 0.2 g/g


B: 0,2-0,9

C: > 0.9

Blutdruck als Progressionsfaktor der CNI ... auch bei Kindern All Patients

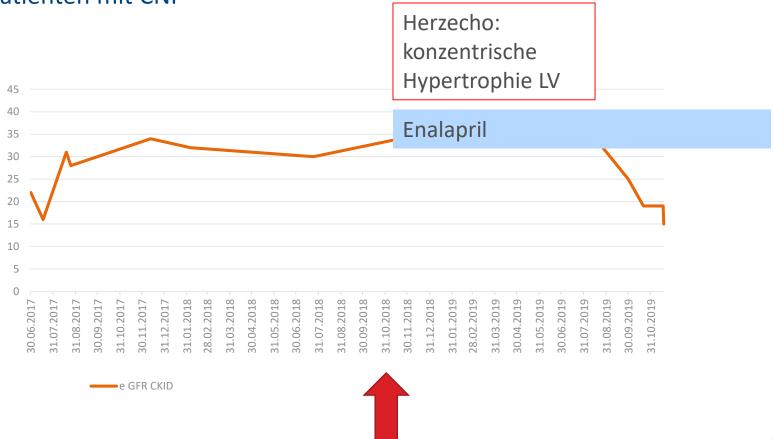
ESCAPE Studie: RCT bei Patienten 3 – 18 Jahren mit CNI, Basistherapie Ramipril (6 mg/m²), Therapieziel Absenkung auf unter 50. RR-Perzentille oder 50.-90., Endpunkt GFR Abfall 50% oder ESRF
Wühl E et al, NEJM, 2009

No. at Risk Intensified

Conventional

Häufigkeit der arteriellen Hypertonie

CNI Stadium II und III (CKiD Studie):


- erhöhte RR Werte bei50%
- ■Hypertonie 18%
- 17% LVH,9% verändertelinksventrikuläreGeometrie

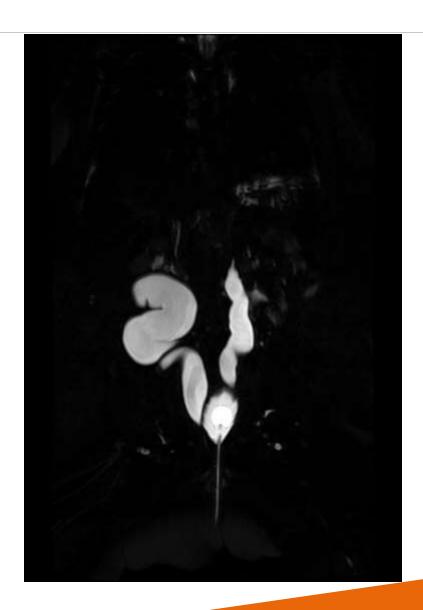
Copelovitch L et al., CJASN, 2011

Gefahr der späten Diagnose der arteriellen Hypertonie bei kleinen

Patienten mit CNI

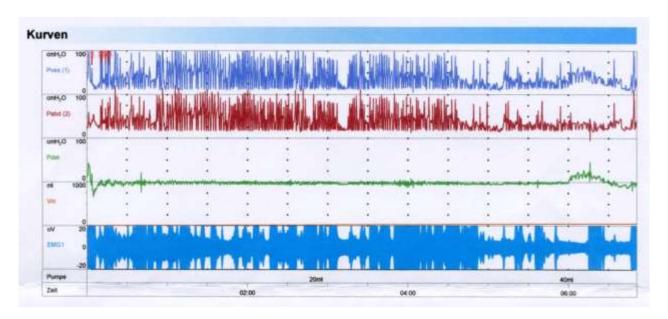
Verlauf

MAG3-Szintigraphie: Relative Funktionsanteile:


rechte Niere: 98,9 rel%

linke Niere: 1,064 rel %

Beurteilung: Normale Ganzkörperclearance. Beidseits keine Abflussverzögerung.

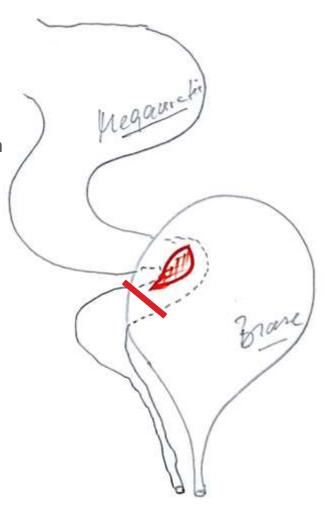


MRT im Alter von 9 LM

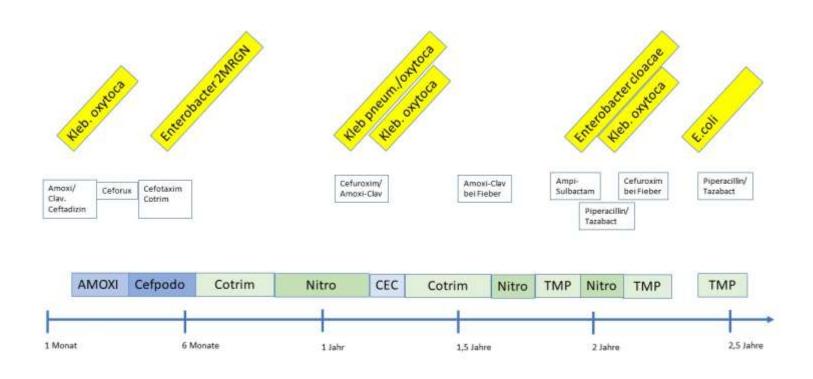
Video Urodynamik im Alter von 11 LM

	Füllvolumen	45	ml	
	Volumen des Harnabgangs	0	ml	
	Blasenfüllung	45	ml	
	Max Blasenkapazität	45	ml	
	Max vesikaler Druck	123	cmH ₂ O	
	Max Detrusordruck	46	cmH ₂ O	
ı	Pumpen-Geschwindigkeit	7	ml/min	

Sonographien im Alter von 12 LM


Blase mit Megaureter

Operation im Alter von 13. Monaten

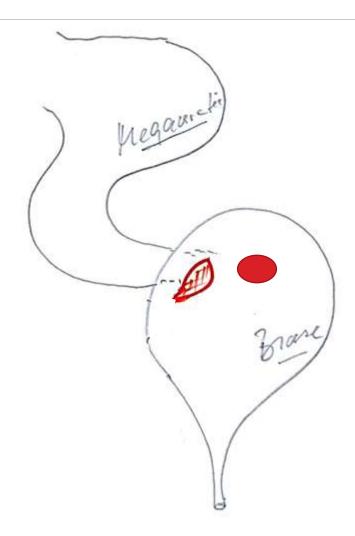

Z.n. mehrmaligen fieberhaften Pyelonephritiden

→ Entschluss zur operativen Durchtrennung des distalen Harnleiteranteiles rechts

Antibiotikaregime und Prophylaxe

Anpassung der Medikamentendosierung an die aktuelle GFR

- Verzicht auf potentiell nephrotoxische Medikamenten
- bei vorwiegende renaler Ausscheidung: Reduktion der Dosis und Verlängerung des Dosisntervalls
- Infos in der jeweiligen Fachinformation oder Nachschlagewerken


Eine kindernephrologische Bitte:

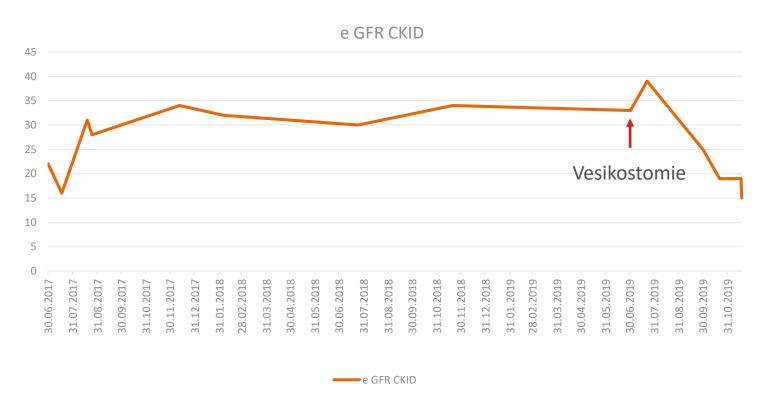
Gefäße und Peritoneum schonen!

Operation im Alter von 26. Monaten

Anlage Vesicostoma

Ausblick - Zusammenfassung

- Eingeschränkte Nierenfunktion
- Funktionelle Einzelniere rechts
- VUR rechts (mit Gefahr HWI?)
- Funktionslose Niere links mit Megaureter (Möglichkeit der Augmentation?)
- Blasenfunktion wahrscheinlich nicht normal (Kapazität/Compliance/Kontinenz)
- Z.n. Vesicostomaanlage Blasenfunktion!


Ausblick – Geplantes Vorgehen

- Reevaluation Blasenfunktion im Verlauf
- Kapazität/Kontinenz
- Vorgehen später (5. LJ) wenn nötig:
 - Blasenaugmentation (Ileum/Megaureter li)
 - +/- Faszienzügelplastik nach Kontinenzleistung
 - Ureterreimplantion rechts in das Augmentat
 - Ggf. Mitrofanoff-Nabelstoma (CIC)

Vorgehen abhängig von möglicherweise notwendig werdender Nieren-TX

Nierenfunktionsverlauf über die Zeit

Übergabe an des Kinderdialysezentrum und Vorbereitung der Dialyse

 Bei Kinder bevorzugter Einsatz der Peritonealdialyse

Hämodialyse mittels Vorhofkatheter oder Gefäßshunt

Ziel: zeitnahe Nierentransplantation

Zum Ende nochmal Prognose: Gesamtlebenserwartung mit CNI im Kindesalter

Table 7.3 Expected remaining lifetime in years of prevalent patients by initial ESRD modality, 2014

Age group	Dialysis patients	Transplant patients	General population
0-4	23.6	56.9	77.1
5-9	24.3	56.3	72.3
10-13	24.1	52.2	67.8
14-17	20.9	48.8	63.9
18-21	17.7	45.2	60.0
22-29	16.0	42.0	54.2

Data Source: Special analyses, USRDS ESRD Database, USA SSA (Social Security Administration) Period Life Table 2014. Includes period prevalent ESRD dialysis and transplant patients in 2014.

Vielen Dank für Ihre Aufmerksamkeit!